

Statistical Modeling of Student Performance to
Improve Chinese Dictation Skills with an
Intelligent Tutor

John W. Kowalski
Carnegie Mellon University
jkau@andrew.cmu.edu

Yanhui Zhang
The Chinese University of
Hong Kong
yhzhang@cuhk.edu.hk

Geoffrey J. Gordon
Carnegie Mellon University
ggordon@cs.cmu.edu

The Pinyin Tutor has been used the past few years at over thirty institutions around the world to teach students
to transcribe spoken Chinese phrases into Pinyin. Large amounts of data have been collected from this
program on the types of errors students make on this task. We analyze these data to discover what makes this
task difficult and use our findings to iteratively improve the tutor. For instance, is a particular set of
consonants, vowels, or tones causing the most difficulty? Or perhaps do certain challenges arise in the context
in which these sounds are spoken? Since each Pinyin phrase can be broken down into a set of features (for
example, consonants, vowel sounds, and tones), we apply machine learning techniques to uncover the most
confounding aspects of this task. We then exploit what we learned to construct and maintain an accurate
representation of what the student knows for best individual instruction. Our goal is to allow the learner to
focus on the aspects of the task on which he or she is having most difficulty, thereby accelerating his or her
understanding of spoken Chinese beyond what would be possible without such focused “intelligent”
instruction.

1. Introduction
One of the hurdles for beginning learners of Chinese is differentiating what Chinese word or
phrase has been spoken to them. On top of learning new vocabulary, translation, and grammar
skills, simply answering, “What syllable did you hear?” is often difficult for beginning students
(Shei & Hsieh, 2012). Improving this rudimentary yet crucial skill for each student in the
classroom can be tedious and in general a poor use of class time. However, computer tutors are
perfectly suited for such practice and the Pinyin Tutor was developed for this purpose.

2. Pinyin Basics
Pinyin is a system of transcribing standard Chinese using Roman characters and is commonly
taught to learners of Chinese at the beginning of their instruction. Most Chinese words are
composed of one or more monosyllabic morphemes. Except for a few ending with the retroflex
“r”[ɚ], the maximum size of a Chinese syllable is structured as CGVV or CGVC, where C
stands for a consonant, G a glide, V a vowel, and VV either a long vowel or a diphthong
(Duanmu, 2007: 71). While the nucleus vowel in a Chinese syllable is obligatory, the
consonant(s) and glide are optional. The Pinyin system categorizes the first consonant in the
Chinese syllable as an initial, and the remaining components (GVV or GVC) as the final.
Standard Mandarin Chinese also uses a suprasegmental feature called lexical tone, representing
the pitch contours that denote different lexical meanings (Chao, 1968).
In the Pinyin Tutor, each syllable is transcribed to Pinyin as three components: an “initial”
segment (b, n, zh, …), a “final” segment (ai, ing, uang, …), and a suprasegmental “tone”
(1,2,3,4,5). In total there are twenty-three initials, thirty-six finals, and five tones (Table 1).
(There are 21 initials in the Pinyin system. But in the Pinyin Tutor, there are 23 because the
special representations of two glides “w” and “y” are categorized as initials. The letters “w” and
“y” are used respectively when the consonants are absent before the glides “i" [j], “u” [w], and
“ü” [ɥ]. For the ease of computation and the generation of feedback when spelling errors occur,
“w” and “y” are regarded as initials.) In terms of the tones, Chinese is defined to have four
tones: high-level, rising, dip-rising, and high-falling. The underlying tones on the weak or
unstressed syllables are regarded as toneless (Duanmu, 2007, 241-242). Correspondingly, the
Pinyin Tutor marks the tones on stressed syllables as Tone 1 to Tone 4, and tones on unstressed
syllables as Tone 5.

3. Operationalizing the Domain
To facilitate comparison and maintain coherence with other assessments, we describe the Pinyin
Tutor project in terms of the evidence-centered design (ECD) framework and describe each
component in terms of the Conceptual Assessment Framework (CAF) (Mislevy et al., 2006). In
each of the following subsections we give a brief description of a model in the CAF, followed by
how it is implemented in the Pinyin Tutor. In this paper, we discuss two versions of the Pinyin
Tutor: an original version that served as a platform for testing and developing new linguistic
theories with the aim of helping learners improve skills, and a subsequent machine learning
(ML) based version with these same aims but also utilizing the wealth of data we collected from
the original version to improve learner instruction. Where the CAF model has been modified
between these two versions, in each subsection we first describe the original version followed by
the changes in the new version.

Table 1. Below are the 64 covariates along with their numeric label we used for the “basic”
model (without interaction terms).

Initials:
1 b
2 p
3 m
4 f
5 d
6 t
7 n
8 l
9 g
10 k
11 h
12 j
13 q
14 x
15 z
16 c
17 s

18 r
19 zh
20 ch
21 sh
22 w
23 y

Finals:
24 a
25 e
26 i
27 o
28 u
29 v
30 ai
31 ao
32 an
33 ei

34 en
35 ia
36 ie
37 iu
38 in
39 ou
40 ua
41 uo
42 ui
43 un
44 ve
45 vn
46 ue
47 ang
48 eng
49 ian
50 ing
51 iao

52 ong
53 uai
54 uan
55 van
56 iang
57 iong
58 uang
59 ueng

Tones:
60 Tone 1
61 Tone 2
62 Tone 3
63 Tone 4
64 Tone 5

3.1 Presentation Model
The Presentation Model answers the question “How does it look?”, describing the interface of
the assessment (Mislevy et al., 2006). The Pinyin Tutor is a web-based application with an
Adobe Flash front-end and server-side CGI scripts written in Perl. The operation of the
presentation model is a dictation task: a Chinese word or phrase is “spoken” through the
student’s personal computer speakers and the learner is asked to enter the Pinyin of that
utterance. The presentation model is the same for both versions of the tutor. To produce the vast
number of audio stimuli required, we recorded every pronounceable syllable in Chinese into a
separate MP3 sound file (approximately 3830 in total). A unique Chinese word or phrase is then
constructed by concatenating the appropriate sound files. While this technique would result in
unnatural sounding speech in English, the result is adequate for Chinese speech instruction.
Many instructors commented the concatenated Chinese syllables produce enunciated, deliberate
sounding speech, similar to the way a teacher would speak to a beginning student. The student
can listen to the target item as many times as they choose by clicking the “Listen to Target”
button. Figure 1 shows a screenshot of the Pinyin Tutor in action.
The student then transcribes the item to Pinyin by typing into a text box. If the Pinyin entered is
correct, the tutor congratulates the student and presents the next item in the lesson. If incorrect,
the tutor gives feedback on what part of the item is incorrect and gives the student an opportunity
to try again. The student can also click the “Listen to Your Attempt” button to hear the item
corresponding to the Pinyin they entered. To a new learner, the differences between an incorrect
attempt and the target phrase can seem quite subtle.

Figure 1. Screenshot of Pinyin Tutor giving feedback to student after hearing “ye3” but
incorrectly entering “ye2” (tone incorrect).

3.2 Student Model
The Student Model answers the question “What are we measuring?” and defines latent (not
directly observable) variables related to student skills and knowledge in the domain (Mislevy et
al., 2006). In the first version of the Pinyin Tutor, the learner is given a set of lessons, each
consisting of a set of Chinese words or phrases, typically defined by the instructor to coincide
with the weekly material in their course syllabus. So, the original student model consists simply
of the percentage of items answered correctly in each lesson. One weakness to this model is that
the external validity of competence at this skill depends strongly on the choice of items in the
lessons. For instance, if an instructor designs a set of lessons lacking practice with Tone 3, this
student model may indicate a high level of mastery of items within these lessons while ignoring a
fundamental skill in this domain. Another possible weakness is the large grain size of tracking
student knowledge. Since this model tracks student knowledge at the level of an entire (possibly
multi-syllabic) phrase, it is quite possible that it does not capture the full picture. For instance, a

component within a phrase may be easily identified if embedded in one item, but may cause
difficulty if embedded in another. Despite these potential weaknesses, the pre/post tests with this
student model and expertly assembled lesson sets have shown significant learning (Zhang, 2009).
For example, learners enrolled in the beginning Chinese language program at a university in
Pennsylvania participated in six Pinyin training sessions for one semester. The comparisons
between the pretest and posttest administered before and after the training sessions showed that
the students’ Pinyin spelling skills improved significantly at the level of p < .001 on all measures
(word, syllable, initial, final, and tone), regardless of whether the words used as training stimuli
were selected from the textbook or not (Figure 2).

Figure 2. Above are the increments of Pinyin dictation accuracy rates between the pretest and
posttest in one semester. Both the group of students who used words from their textbook and the
group who used general words as training items had significantly better performance after one
semester of practice with the Pinyin Tutor.

Notwithstanding the successful refinement of dictation skills by using this original student
model, we would still like to design a model that more accurately captures what the student
knows. Rather than monitor what a student knows at the whole item level, perhaps we can
design a better student model by monitoring student knowledge at the component level. That is,
perhaps we can track student performance at transcribing the initial, final, and tone per syllable
in context. And since we have collected much data on the types of errors students make at
identifying these components, an ideal student model would take into account what we have
learned about students' performance at this task. A natural way to harness both these ideas is to
use this wealth of data to train a statistical model for “typical” performance at each component.
Then by using these trained models and monitoring an individual student's performance at each
skill, the tutor can predict the probability of a student correctly identifying a component, and use
this information to sequence instructional material and estimate mastery. We discuss this student
model further in section 6.

3.3 Task Model
The task model describes the material presented to the student along with the student response to
it. It answers the question “Where do we measure it?” and supplies us with evidence to make
claims about the student model variables (Mislevy et al., 2006). For both versions of the Pinyin
Tutor, the essential components of the task model consist of the sound file(s) played through the
computer's speakers and their corresponding Pinyin transcripts. The tutor only gives feedback
on valid Pinyin containing the same number of syllables as the entry for the audio stimulus. We
included this constraint to discourage students from entering careless or random strings of letters.
The key features of the task are the initial, final, and tone components within each syllable.
While the whole-item student model doesn't track student knowledge at this level, the Pinyin
Tutor gives feedback on errors at the component level in both the whole-item and the
component-level (ML-based) model. For example, if the Pinyin of an audio stimulus is “ci3”,
whereas the student types “chi3”, the feedback will point out that the initial “ch” is incorrect.
Similarly, if they typed “che2” instead of “ci3” (getting all components wrong), the feedback
would be that the initial “ch” is incorrect, final “e” is incorrect, and tone “2” is incorrect.

3.4 Evidence Model
The evidence model describes how we should update our belief about the student model
variables by answering the question “How do we measure it?”. Whereas the student model
identifies the latent variables, the evidence model identifies the observable variables we can use
to update our notions of the latent variables such as student knowledge (Mislevy et al., 2006). In
the original tutor, each Pinyin phrase is thought of as one unit and isn't broken down into
features. And so, the observable variables in the evidence model are correctness on the whole-
item level. These observables are used to update our estimate of student knowledge by
calculating the percentage of items correctly transcribed in a particular lesson.

The evidence model for the ML-based tutor defines a separate observable variable indicating
correctness for each initial, final, and tone per syllable. The values of these observables are used
to estimate our notion of student knowledge by feeding each into a function that computes the
probability of that component being known by the student. The details of how the tutor converts
these observable variables into an estimate of student knowledge are described in section 6.

3.5 Assembly Model
The assembly model describes how the tasks should be properly balanced to reflect the domain
being taught and answers the question, “How much do we need to measure?” (Mislevy et al.,
2006). In the assembly model of the original tutor, items the student answered incorrectly on the
first try are put back into the pool of items for that lesson to be presented again; items answered
correctly on the first try are eliminated from the pool. The student continues until all items in the
lesson have been answered correctly. How well this assembly model reflects expertise in the
domain depends strongly on how well balanced the instructor’s chosen set of items is in the
lesson.

The assembly model that works with the ML-based student model operates differently. In this
case, we take advantage of the rich information provided by this student model and choose items
from a large pool (approximately 2300 phrases) that the student model predicts as most likely to
be incorrectly transcribed by the student. Since this assembly model will give learners more
practice on the components causing the student difficulty instead of re-drilling particular phrases
causing difficulty, the hope is this will yield more robust learning by giving practice with these
difficult parts in varying contexts (The Pittsburgh Science of Learning Center, 2013).

4. Related Work
The rapid expansion of Internet accessibility, increase in computer processor and network
speeds, and recent advances in web technologies are accelerating the creation of computer-based
tools for learning second languages (Davies, Otto, & Rüschoff, 2012).

4.1 Computer-Assisted Language Learning (CALL)
In Table 2, we list some CALL tools having qualities similar to the Pinyin Tutor. For instance,
the BBC Languages website includes a “Chinese Tone Game” where the learner is presented
with the audio of a Chinese phrase and is asked to choose among four choices of Pinyin which
one matches the audio. Another exercise with a task similar to the Pinyin Tutor’s is included as
part of the French course at Carnegie Mellon's Language Online site. In this exercise, the audio
of a phrase in French is played and the student is asked to type the phrase they heard. The site
then gives feedback either by letting the student know their response is correct, or by marking in
red the parts of the phrase that are misspelled. While these tasks are similar in some ways to the
Pinyin Tutor’s, the Pinyin Tutor is unique in that it allows students to compare the audio of their
Pinyin attempts to the target, along with the very specialized feedback it gives, as described in
section 3.3.

A possible critique of the Pinyin Tutor and most CALL tools in general is that they focus
on an isolated subset of a language. However, to master a language, a student must be fluent in
how these subsets fit together to make a whole. For instance, a particular Pinyin word can map
to one or more Chinese characters, with each mapping onto different meanings. These characters
in turn are combined to make new words, sometimes in non-intuitive, idiomatic ways. The
“Linkit” system is an effort to create a CALL tool to illustrate these interrelationships to students
of the Chinese language (Shei et al., 2012). The Linkit system consists of a database of the
relationships between levels of phonology, morphology, orthography, vocabulary, and
phraseology in Chinese and is constructed by experts and partially automatized by reading from
existing resources on the web. Learners can use this database either in an “explore” mode to
browse the relationships of Chinese language components, or in a “practice” mode where parts
of the database are hidden and the student is to fill in values for these omitted components while
getting feedback on their attempts. They also propose a “re-creation” exercise that uses the
Linkit system to test the student on re-creating Chinese word forms and phrases based on the
characters and words learned so far with the system.

Table 2.

Related Web-Based Computer-
Assisted Language Learning Program Description

Rosetta Stone

http://rosettasone.com

Commercial website with interactive exercises for thirty
languages.

Duolingo

http://www.duolingo.com

Interactive exercises in Spanish, English, French, German,
Portuguese, and Italian. Traces student skill level and adapts to
level of mastery.

MIT OpenCourseWare

http://ocw.mit.edu

Courses in Chinese, French, German, Japanese, Portuguese,
Spanish, and English as a second language.

Language Online
http://mlrc.hss.cmu.edu/languageonline

Courses at Carnegie Mellon University with interactive exercises
for French, Spanish, and Chinese.

Online language course materials offered by
The University of Texas at Austin:

http://www.utexas.edu/cola/laits/digital-media-
services/course-sites.php

Course materials at The University of Texas at Austin for many
languages including Arabic, Chinese, French, German, Hebrew,
Italian, Japanese, Persian, Russian, and Spanish.

BBC Languages

http://www.bbc.co.uk/languages

The British Broadcasting Corporation (BBC) provides a large
collection of CALL exercises for over thirty languages.

4.2 Intelligent Computer-Assisted Language Learning (ICALL)
The ML-enhanced version of the Pinyin Tutor belongs to the family of “intelligent CALL”, or
ICALL tools. Starting as its own field of research roughly in the 1990s, ICALL furthers the
capabilities of traditional CALL by integrating techniques from artificial intelligence and
machine learning. Techniques from these fields allow finding latent patterns in student data,
parsing and generating natural language, and recognizing human speech. This enables
constructing more accurate student models, giving more precise feedback, and attempts to make
a more natural student-tutor interaction. ICALL tutors have made use of natural language
processing (NLP), natural language generation (NLG), machine translation (MT), automated
speech recognition (ASR), and intelligent tutoring system (ITS) architecture (Gamper & Knapp,
2002). In this context, the Pinyin Tutor could be considered an ITS in that it maintains a student
model and provides immediate and feedback tailored to learners (Graesser, Conley, & Olney,
2012).

While there is no other ICALL system for Pinyin dictation, some ICALL systems have qualities
similar to the Pinyin Tutor. Below we describe three such systems, highlighting characteristics
in each analogous to those in the Pinyin Tutor.
One ITS ICALL system example is E-tutor, an online set of course materials for the German
language (Heift, 2010). While the Pinyin Tutor is a tool focused on Pinyin dictation skills, E-
tutor is a set of resources spanning the first three university courses in German. Both are ICALL
tools that construct models to give tailored instruction addressing student strengths and

weaknesses. The student, task, evidence, and assembly models of the Pinyin Tutor are based on
parsing the initial, final, and tone components of Pinyin syllables. The E-tutor models are based
on errors of spelling and German grammar identified through NLP techniques. The results of E-
tutor's NLP processing are used to construct phrase descriptors, indicating for instance a student
error in subject-verb agreement. The E-tutor uses these results to construct an evidence model
by associating with each phrase descriptor a counter that is decremented when the student
successfully meets the grammatical constraint of a phrase descriptor, and incremented otherwise
(Heift, 2008). The set of values for these counters are used to define E-tutor’s evidence model,
which is used to tailor the lesson and feedback to each learner.
The English Article Tutor (Zhao, Koedinger, & Kowalski, 2013) was designed to help students
learning English as a second language to master proper use of the English articles (“a/an”, “the”,
or no article). The student models of the English Article Tutor and Pinyin Tutor are similar in
that they are both informed by the results of statistical methods based on previous student data.
The English Article tutor defines 33 rules necessary for the student to master English article
usage. A trained model for each of these rules is used to predict the probability of applying the
skill related to that rule correctly on their next attempt. Although the statistical methods used to
train these models are different from those used to train models in the Pinyin Tutor, the general
framework is similar. Namely, after each opportunity to apply a skill (correctly applying an
article rule / correctly identifying a Pinyin component), each tutor computes the probability this
skill is known and uses this information to give the student more practice on items with skills
they're having most difficulty.
An ICALL system with a task model similar to the Pinyin Tutor is the ICICLE Project
(Interactive Computer Identification and Correction of Language Errors) currently being
developed at the University of Delaware (Michaud, McCoy, & Pennington, 2000). It is a tutor
for written English with the primary aim to assist deaf students whose first language is American
Sign Language. The student initializes interaction with ICICLE by submitting a piece of their
English writing. The system analyzes this submission using NLP/NLG techniques to identify
errors and generate feedback to help the student understand their mistakes and guide them with
making corrections. The student then modifies their writing and resubmits it to ICICLE in light
of this feedback, starting the cycle once again. In this sense, ICICLE's task model is similar to
the Pinyin Tutor's with its cycle of student response, tutor feedback, then cycling back to the
student improving their response considering the tutor’s feedback.

Our work on the intelligent Pinyin Tutor utilizes ML techniques in a way novel to the current
state of ICALL. The tutor itself implements a form of knowledge tracing (KT) (Corbett &
Anderson, 1995), which has been successfully implemented in many non-language tutors, but
very rarely applied to ICALL tools. While KT has been used in ICALL, for instance to construct
a student model of reading proficiency (Beck and Sison, 2006), our application of the statistical
methods used to construct the student model for KT in a language tutor is unique. Although
these techniques haven’t been applied to ICALL, they are generalizable and we anticipate they
could be used to analyze and improve portions of many CALL tools. Specifically, these
techniques show how to use data to construct improved student, task, and evidence models.
They enable understanding what skills are important in predicting student success and how to use
these important skills to give the best practice tailored to each student.

5. Identifying What Causes Students the Most Difficulty
Using data collected from the Pinyin Tutor in Fall 2008, we have approximately 250,000 training
examples taken from student first attempts at an item. Each training example consists of two
Pinyin phrases: the phrase presented and the student attempt at transcribing that phrase. We only
include student first attempts in our analysis since second and third attempts include feedback
pointing out which parts are incorrect. We do this because we do not want to include the effects
of immediate feedback when training our models.

Beyond asking which items students are having trouble with, a natural question to ask is which
component(s) of these items are causing the most difficulty. Are some initials, finals, or tones
particularly problematic? And beyond this, we must also consider difficulties that may arise in
the context in which these segments are embedded. For instance, is final “ao” easy to hear in
“hao3”, but not in “bao4”? To answer these questions, we train statistical models of student
performance. If we obtain a reasonably low generalization error with these models, we can gain
insight to what the easy and difficult segments are as well as clues to how we can further
improve instruction.

5.1 Modeling a Pinyin Syllable

A method to fit a model to our data is linear regression. We constructed our first model of a
Pinyin syllable as a linear prediction with 64 covariates (one for each of 23 initials, 36 finals, 5
tones), and output whether this syllable was answered correctly. Formally, this is:

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
y indicates correctness from training data (0=incorrect, 1=correct).
ŷ is the running predicted output of our model computed by the Lasso.
(If ŷ > .5, predict correct. If ŷ .5, predict incorrect.)
s is a bound that can be used as a tuning parameter.

1

 (1)

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
y indicates correctness from training data (0=incorrect, 1=correct).
ŷ is the running predicted output of our model computed by the Lasso.
(If ŷ > .5, predict correct. If ŷ .5, predict incorrect.)
s is a bound that can be used as a tuning parameter.

1

To calculate the vector β of model parameters, as a first method we use the normal equation (2)
to minimize the sum of squared errors.

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
• y indicates correctness from training data (0=incorrect, 1=correct).
• ŷ is the running predicted output of our model computed by the Lasso.
If ŷ > .5, predict correct. If ŷ .5, predict incorrect.
• s is a bound that can be used as a tuning parameter.

1

 (2)
With this trained model, we are able to estimate the probability a syllable will be answered
correctly (ŷ) by setting three covariates (xns) to 1, corresponding to the initial, final, and tone
present in that syllable, and the remaining covariates to 0. We set a threshold of .5 for ŷ so that
if ŷ ≥ .5 we predict a student will likely correctly transcribe this syllable, and if ŷ < .5 we predict
a student will likely incorrectly transcribe this syllable. For example, if we set to 1 the features
corresponding to the initial, final, and tone of “zhi3”, our model outputs 0.6857797 ≥ .5 and so
we interpret this as predicting “correct”. If however we plug in “xi5”, we get 0.4497699 < .5,
and so our model predicts “incorrect” for this syllable.

Another popular method to train a classifier is logistic regression. This technique alters our
model with the logistic “squashing” function. This makes it well suited for predicting student
success probabilities by bounding the prediction range within [0,1]. Now instead of fitting
directly to a linear equation, we fit our data to a logistic curve:

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
• y indicates correctness from training data (0=incorrect, 1=correct).
• ŷ is the running predicted output of our model computed by the Lasso.
If ŷ > .5, predict correct. If ŷ .5, predict incorrect.
• s is a bound that can be used as a tuning parameter.

1

 (3)

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
• y indicates correctness from training data (0=incorrect, 1=correct).
• ŷ is the running predicted output of our model computed by the Lasso.
If ŷ > .5, predict correct. If ŷ .5, predict incorrect.
• s is a bound that can be used as a tuning parameter.

1

The logistic function is defined as:

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
• y indicates correctness from training data (0=incorrect, 1=correct).
• ŷ is the running predicted output of our model computed by the Lasso.
If ŷ > .5, predict correct. If ŷ .5, predict incorrect.
• s is a bound that can be used as a tuning parameter.

1

 (4)
where:

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
y indicates correctness from training data (0=incorrect, 1=correct).
ŷ is the running predicted output of our model computed by the Lasso.
(If ŷ > .5, predict correct. If ŷ .5, predict incorrect.)
s is a bound that can be used as a tuning parameter.

1

 (5)

The logistic function takes any value from −∞ to +∞ and converts it to a value in the range [0,1].
So unlike linear regression where ŷ has the range [−∞, +∞], we can interpret the ŷ of logistic
regression as the probability of y=1 (in our case, the student correctly transcribing a syllable).
We used R’s “glm” function to run logistic regression on our dataset. We obtained similar
prediction accuracy for student performance with logistic regression as with linear regression.

5.2 L1-penalized Models

While the popular linear and logistic regression techniques are familiar, accessible, and often
generate good models, we can construct a more accurate model with a slightly more
sophisticated technique. If instead of just minimizing the error of the model to the training data
as we do with linear and logistic regression, we simultaneously minimize the sum of the absolute
value of the coefficients, the model can take on a number of valuable properties (Tibshirani,
1996). This sum of absolute values is referred to as the “L1-distance” or “Manhattan distance”
where we sum the vertical and horizontal components of the distance between two points. This
technique of simultaneously minimizing error and model coefficients is known as regularization
or adding a “penalty” to a model. We can also penalize using the squared sum of the
coefficients, known as the L2-distance, or Euclidean / straight-line distance. Models with an L2
penalty also have some useful properties, but do not have some that are directly useful for our
current study.

The method of training a model with an L1-penalty is commonly referred to as the “least absolute
shrinkage and selection operator (Lasso)”. Formally, we

Minimize:

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
• y indicates correctness from training data (0=incorrect, 1=correct).
• ŷ is the running predicted output of our model computed by the Lasso.
If ŷ > .5, predict correct. If ŷ .5, predict incorrect.
• s is a bound that can be used as a tuning parameter.

1

 (6)
Under constraint:

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
• y indicates correctness from training data (0=incorrect, 1=correct).
• ŷ is the running predicted output of our model computed by the Lasso.
If ŷ > .5, predict correct. If ŷ .5, predict incorrect.
• s is a bound that can be used as a tuning parameter.

1

 (7)

1

ŷ = �0 + �1x1 + �2x2 + . . .+ �64x64

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.

2

� = (XTX)�1XT y
3

ŷ = f(�0 + �1x1 + �2x2 + . . .+ �64x64)

where:
ŷ � 0.5(correct), ŷ < 0.5(incorrect).
x
n

= 1 if feature n is present, 0 otherwise.
�
n

= coe�cient for feature n.
�0 = intercept.
f(·) = logistic function.

4

f(z) = 1
1+e

�z

5
where:
z = �0 + �1x1 + �2x2 + . . .+ �64x64

6P
(y � ŷ)2

7

P
j

|�
j

| s

where:
y indicates correctness from training data (0=incorrect, 1=correct).
ŷ is the running predicted output of our model computed by the Lasso.
(If ŷ > .5, predict correct. If ŷ .5, predict incorrect.)
s is a bound that can be used as a tuning parameter.

1

Computing the above minimization is a quadratic programming problem and could naively be
quite computationally expensive. However, the least angle regression (LARS) technique (Efron
et al., 2004) provides an efficient solution.

In the lasso method, if the tuning parameter s is very large, the β’s can grow unconstrained and
we are left with the usual linear regression model. But for smaller values of s, we compute a
“shrunken” version of the model. This shrunken version will often lead to some of the
coefficients (βis) being zero, so choosing a value for s is like choosing the number of predictors
in the model (Tibshirani, 1996). This introduces the classic bias-variance trade-off. A large
value for s will allow the model to grow to fit the training data as best it can, but perhaps fail to
generalize to cases outside the training data set (high variance). A small s will allow the model to
tune to the features that best predict output overall, and not try to fit every point in the training
set. But making s too small can cause the model to ignore important features necessary for
prediction (high bias).

To find the optimal value for s, the authors of the LARS-lasso technique provide an R package to
perform a K-fold cross-validation to measure how well a lasso model with a certain s predicts
student error (Hastie et al., 2012). Typically a model will more often correctly classify an item
from the dataset on which it was trained than an item from outside this set. K-fold cross-
validation is a technique where we can get a better estimate on how well a model will generalize
to items outside the training set. It does this by dividing the original sample into k subsets,
training the model on k-1 subsets, and testing the model on the subset left out. It repeats this
process k times, so that every subset is used exactly once for testing the model, and averages the
prediction rate over the k tests. We set k to the often-used value of 10 and repeatedly ran 10-fold
cross validation for different values of s to find the lowest s that best predicts student
performance (Figure 3). We found that a model with an s that includes about 1/3 of the
parameters fits as well (73.62% accuracy) as a linear regression model including all parameters
(73.68% accuracy). For a graph of LARS-lasso coefficient learning progress for our 64-
covariate Pinyin model see Figure 4.

Figure 3. The graph above represents the K-fold cross-validated mean squared prediction error of the
64-covariate syllable model as modeled by Lars-Lasso. As described in figure 3, the x-axis represents
the fraction of the abscissa values at which the CV curve should be computed, as a fraction of the
saturated |beta|. Here we see that the 64-covariate model maximizes its predictive power after about 1/3
of the most important covariates (in terms of predicting syllable correctness) are included.

Figure 4. The graph above shows the coefficient learning progress of Lars-Lasso on the 64-covariate
syllable model. The x-axis represents the fraction of the abscissa values at which coefficients are
computed, as a fraction of the saturated |beta|. The y-axis represents the standardized values of the
coefficients of each covariate. As described earlier, the Lars-Lasso method can be thought of as a
linear regression with an s parameter that allows one to choose how many covariates to include in the
model. The graph starts at the left with few covariates that are most predictive of whether a student
will answer a syllable correctly (corresponding to using a small s). As we increase s to its maximal
value (100% saturation, |beta| / max(|beta|)=1.0), we’re including all covariates, which is essentially a
regular linear regression. These are the values listed on the rightmost side of the graph.

5.3 Interpreting the Trained Models

For every model discussed, we get an estimate of the probability a student will correctly
transcribe the audio of a Chinese syllable into Pinyin. While the ability to estimate the difficulty
of a Pinyin lesson is already quite powerful, applying the lasso gives even more insight to the
skill. Since the lasso selects only the most meaningful features in predicting student
performance, we are left with a parsimonious model that is easier to interpret. Another way the
lasso increases interpretability is by finding a model where coefficients are small (shrinkage).
This is especially true when comparing how regular linear regression can train models having
correlated features. Here, the lasso avoids the situation where one correlated feature grows
wildly in the positive direction, while the other grows wildly in the negative direction. While a
model trained with this behavior can predict well, it may have uninterpretable coefficient values.
But with our lasso-trained models, we can interpret covariates with larger coefficients as easier
Pinyin skills and those with smaller ones as more difficult (Table 3). Another way to gain
insight to the Pinyin transcription skill comes about by tracing the features the lasso adds as the
constraint (s parameter) is gradually lifted. This algorithm trace gives us a ranking of feature
importance since the lasso adds features most helpful for predicting student performance first
(Table).

Table 3. Listed below are the coefficients of the basic 64-covariate syllable model learned by
Lars-lasso with only the most important features present. Within each component type, rank is
from hardest to easiest followed by “excluded” features that aren’t as helpful in predicting
student performance.

Initials:
c -0.1641
r -0.1004
q -0.0991
zh -0.0752
z -0.0522
s -0.0148
x -0.0096
j -0.0072
y -0.0016
h 0.00303
p 0.0032
sh 0.0090
l 0.0093
k 0.0345
g 0.0451
d 0.0451
f 0.0455
w 0.0597
b 0 (excluded)
m 0 (excluded)
t 0 (excluded)
n 0 (excluded)

ch 0 (excluded)

Finals:
un -0.1615
v -0.0815
o -0.0691
uan -0.0586
ing -0.0584
ang -0.0558
eng -0.0456
iong -0.0309
u -0.0241
iang -0.0128
ou -0.0068
ui -0.0026
ie 0.0190
i 0.0199
ao 0.0199
ei 0.0307
ong 0.0441
ai 0.0470
en 0.0537
a 0.0609
ua 0.0724

ia 0.1207
e 0 (excluded)
an 0 (excluded)
iu 0 (excluded)
in 0 (excluded)
uo 0 (excluded)
ve 0 (excluded)
vn 0 (excluded)
ue 0 (excluded)
ian 0 (excluded)
iao 0 (excluded)
uai 0 (excluded)
van 0 (excluded)
uang 0 (excluded)
ueng 0 (excluded)

Tones:
Tone 2 -0.0428
Tone 1 0.0027
Tone 5 0.0293
Tone 3 0 (excluded)
Tone 4 0 (excluded)

Table 4. Listed below is the sequence of lasso moves with the step number followed by the
feature added to the model. Features added in earlier steps are more correlated with student
performance than features added in later steps. As the constraint on the lasso is lifted and more
variables are allowed, sometimes the combination of multiple features less-correlated with
student performance predict better than a previously added feature. In this case the lasso
removes the feature in the less constrained model. This is indicated by a minus sign in front of
the feature.

1 q
2 Tone 2
3 c
4 a
5 r
6 un
7 ing
8 zh
9 d
10 eng
11 g
12 w
13 ia
14 en
15 ang
16 uan
17 Tone 5
18 ong
19 z
20 f
21 ei
22 v

23 ai
24 u
25 k
26 o
27 ua
28 i
29 ao
30 sh
31 x
32 iang
33 s
34 l
35 ie
36 ou
37 Tone 1
38 j
39 iong
40 h
41 y
42 p
43 ui
44 uang

45 iao
46 an
47 iu
48 uo
49 uai
50 ue
51 in
52 m
53 Tone 4
54 b
55 ve
56 e
57 ian
58 ch
59 -an
60 Tone 3
61 -Tone 2
62 t
63 n
64 an
65 -uo
66 -b

67 Tone 2
68 uo
69 -iang
70 b
71 iang
72 -ch
73 -ou
74 ch
75 ou
76 -ui
77 ui
78 -l
79 l
80 -sh
81 -u
82 sh
83 u
84 -p
85 p
86 -h
87 h

5.4 Toward a More Accurate Model
We have encountered technical limitations in finding models more accurate than our 64-
covariate model. For instance, we were unable to use the R package to optimize the model
containing all possible interaction terms between segments without running out of system
memory. Shortly before the writing of this paper, we realized the existence of a new and very
computationally efficient system for linear classification called LIBLINEAR (Library for Large
Linear Classification) (Fan et al., 2008). With it, we were able to train a 5327-covariate model
that included all main effects, plus all 2-way and 3-way interaction terms of the 64 Pinyin
segments: 5327 = (64) + (23×36+23×5+36×5) + (23×36×5). We used LIBLINEAR to perform
L1-regularized logistic regression to train this model. Formally, LIBLINEAR finds:

ŷ is the running predicted output of our model computed by the Lasso.
(If ŷ > .5, predict correct. If ŷ .5, predict incorrect.)
s is a bound that can be used as a tuning parameter.

8

min
�

P
j

|�
j

|+ C
P

l

i=1 log(1 + e�yi�
T
xi)

where:
� is the vector of weights learned by the model.
x
i

is the vector representing the ith Pinyin item presented to a student.
y
i

= +1 if item i answered correctly, y
i

= �1 if item i answered incorrectly.
C > 0 is a penalty parameter.
l is the number of training items.

9

�
t

(i) = P (q
t

= S
i

| O1, O2, ..., Ot

,�)

where:
�
t

(i) is the probability of being in state i at time t.
i 2 {Learned,Unlearned}.
O

t

is the observation of a correct/incorrect attempt at time t.
� is the trained HMM for a skill.

2

 (8)

8

min
�

P
j

|�
j

|+ C
P

l

i=1 log(1 + e�yi�
T
xi)

where:
� is the vector of weights learned by the model.
x
i

is the vector representing the ith Pinyin item presented to a student.
y
i

= +1 if item i answered correctly, y
i

= �1 if item i answered incorrectly.
C > 0 is a penalty parameter.
l is the number of training items.

9

�
t

(i) = P (q
t

= S
i

| O1, O2, ..., Ot

,�)

where:
�
t

(i) is the probability of being in state i at time t.
i 2 {Learned,Unlearned}.
O

t

is the observation of a correct/incorrect attempt at time t.
� is the trained HMM for a skill.

2

If β Txi > 0, the trained model predicts “correct”, “incorrect” otherwise. Using 10-fold cross
validation, we found our LIBLINEAR-trained model predicts with approximately 87% accuracy.
Compared to our results with the 64-covariate model, the improvement in prediction accuracy
shows there is substantial information contained in the interaction terms. In Table 5, we show
some of the strongest interaction terms in predicting student performance.

6. Making the Pinyin Tutor More Intelligent
While the practice the original Pinyin Tutor version provides is valuable (Zhang, 2009), it may
not be the most efficient way for students to learn, since remediation is based on the whole item,
not on the particular segments of the item causing difficulty. For example, if the tutor presents
the two-syllable item “ni2hao3”, but the student incorrectly types “ni2ho4”, the original
assembly model will put this item back into the pool for a future re-drilling. But the student did
not demonstrate difficulty with initials “n” or “h”, final “i”, or the tone in the first syllable. The
student did, however, demonstrate difficulty with the final “ao”. Specifically, the student
demonstrated difficulty with the final “ao”, when in the second syllable, preceded by initial “h”,
with tone 3. What if we could give students more focused practice on the parts they have
demonstrated difficulty? For our example, what if we could give more practice on items most
similar to having a final “ao” in the second syllable, preceded by initial “h”, with tone 3? By
modifying the assembly model to drill similar items instead of the exact same item, we also
avoid the possibility that the learner relies on a mnemonic crutch such as “when I hear ‘ni2hao3’
be sure to mark the syllables as Tone 2 and Tone 3”.

To achieve this type of behavior, we augmented the Pinyin Tutor’s assembly model with
knowledge tracing (Corbett et al., 1995). To implement knowledge tracing, the subject to be
taught is broken down into a set of skills necessary for the student to master in order to master
that subject. As the student works through the tutor, knowledge tracing continually estimates the
probability a student knows a skill after observing student attempts at the skill. This estimate
allows the tutor to give more practice on items with skills where the student is having the most
difficulty. This technique has shown to be effective in domains where the set of necessary skills
can be clearly defined, such as the rules necessary to solve an algebra problem (Koedinger et al.,
1997) or a genetics problem (Corbett et al., 2010), or to prove geometric properties (Koedinger
et al., 1993).

Table 5. Some of the most important coefficients of the 5327-covariate model learned by LIBLINEAR.
Within each interaction type, we first show ten terms most important in predicting an incorrect student
response (strongest negative), followed by ten terms most important in predicting a correct student
response (strongest positive).

Strongest Negative Initial_Final
Interaction Terms
h_a -5.40
k_i -4.21
k_o -3.85
w_a -3.83
g_o -3.81
sh_o -3.72
zh_o -3.49
d_en -3.31
g_i -3.16
k_uan -3.08

Strongest Positive Initial_Final
Interaction Terms
j_ie 5.74
j_ing 4.63
h_uo 4.49
c_ai 4.49
j_ia 4.46
j_ue 4.15
y_in 4.10
y_e 3.98
y_i 3.97
l_un 3.93

Strongest Negative Final_Tone
Interaction Terms
o_4 -3.45
o_2 -3.30
o_1 -2.86
ue_3 -2.86
o_5 -2.59
e_3 -2.31
ing_3 -2.16
v_2 -2.08
ua_3 -2.07
ao_2 -1.72

Strongest Positive Final_Tone
Interaction Terms
ie_5 2.41
iang_5 1.97
uang_5 1.88
e_5 1.67
uan_1 1.53
iang_3 1.38
eng_1 1.37
i_4 1.28
o_3 1.27
ai_5 1.22

Strongest Negative Initial_Tone
Interaction Terms
k_2 -4.38
m_1 -4.34
g_2 -4.11
n_1 -3.75
q_4 -3.75
ch_4 -3.72
y_1 -3.68
r_1 -3.61
x_4 -3.46
x_2 -3.27

Strongest Positive Initial_Tone
Interaction Terms

d_3 2.82
g_3 2.06
b_5 1.60
w_2 1.36
l_5 1.23
n_3 1.01
m_5 0.98
sh_5 0.90
b_3 0.85
s_5 0.66

However, formally defining the set of skills necessary for learning a language is difficult
(Heilman & Eskenazi, 2006). Learning a language requires the student to master vocabulary,
grammar, syntax, cultural conventions, and pronunciation. In addition, many of these skills
are context sensitive and have various exceptions. Given this complexity, there are very few
CALL tutors that implement knowledge tracing. It is feasible though to define a set of skills
for certain subsets of a language. The Pinyin Tutor defines a reasonably sized set of skills
necessary for mastery based on the values of the three component types in each syllable.
Below, we will also consider a larger set of skills based on interactions between component
types.
Our implementation of knowledge tracing trains a Hidden Markov Model (HMM) for each of
these skills and uses the HMM to calculate the probability the skill has been learned by the
student. Knowledge tracing via HMMs can be viewed as complementary to the regression
techniques above (linear regression, logistic regression, and the lasso): we can use the
regression techniques to discover which skills or skill combinations are important to trace, as
well as to initialize knowledge tracing (as described below). Then, we can use knowledge
tracing to track individual student learning in real time. Linear regression, logistic regression,
and the lasso give us interpretable models providing insight to how we may better improve
instruction—for example, the lasso can tell us which skills or skill combinations are important
to train. But, incorporating these models directly into the tutor to implement knowledge
tracing is not straightforward: these models do not adapt to the actual performance of the
current student. There are variants of our logistic regression model that do adapt to observed
performance (Chi et al., 2011; Pavlik et al., 2009); however, the HMM is the only one of the
models mentioned here that truly treats the student’s performance as evidence about a latent
knowledge level that evolves over time. For example, observing “correct, correct, correct,
incorrect, incorrect, incorrect” is not the same as “incorrect, incorrect, incorrect, correct,
correct, correct”; in the HMM these sequences lead to different predictions about student
knowledge, while in the other models mentioned above they do not.

6.1. Hidden Markov Model Basics
A Hidden Markov Model is a statistical model that represents a Markov process with “hidden”
state (Rabiner, 1989). A Markov process can be thought of as a finite state machine where
transitions between states are assigned probabilities and the probability of transition to a state
at time t+1 depends only on the state the machine is in at time t. The “hidden” part is that we
are not able to directly observe what state the machine is in currently, just the output
dependent on the current state. The output symbols are assigned a different probability
distribution in each state.

6.2. Hidden Markov Model Application
We create an HMM for each skill necessary to master our Pinyin transcription task. For our
first model, we'll train an HMM for each of the 64 segments the Pinyin Tutor recognizes. We
can later supplement these basic 64 skills with a subset of the skills representing the
interactions between each pair of features (initial-final, initial-tone, and final-tone). To choose
a subset from the 64 + 23×36 + 23×5 + 36×5 = 1187 HMMs, we can use the lasso to identify

the ones that best predict student performance. That is, we can trace only the skills and skill
combinations that correspond to regression coefficients that lasso identifies as nonzero.

As shown in Figure 5, the HMM for each skill has two states: Learned (L) and Unlearned (U).
In each of these hidden states, we are able to observe whether a skill is answered correctly (C)
or incorrectly (I). The transition probabilities between each state are:
- P(learn), the prior probability of transitioning (U)à(L) at each step given that we start
at (U).
- P(forget), the prior probability of transitioning (L)à(U) at each step given that we start
at (L).

Conditional observational probabilities within each “hidden” state are:

- P(slip), the probability making an error even if the student is in the (L) state.

- P(guess), the probability of guessing correctly even if the student is in the (U) state.

Figure 5. Hidden Markov Model representation (one for each Pinyin skill).

With the structure (states and transition paths) of the HMMs defined, we calculate the
transition and conditional observation probabilities for the two states. One way to
approximate transition probabilities is via the Baum-Welch algorithm, an Expectation-
Maximization method that makes use of the forward-backward algorithm, a special case of
belief propagation tuned to HMMs (Rabiner, 1989). We can use a single set of four
parameters for all skills, or we can train separate models for each skill. Alternatively, we can
use our regression models to provide priors for each skill’s parameters, or to group skills by
difficulty and share parameters within each group. The more difficult skills are the ones that
have larger negative coefficients.)

Again using the data collected from the Pinyin Tutor in the Fall 2008 semester and
considering only student performance on their first attempt, we have approximately 250,000
student-tutor interactions for training our Pinyin skill HMMs via the Baum-Welch algorithm.
To evaluate these models, we need to use them in the context of the Pinyin tutor, described in
the next section.

6.3. Using Trained HMMs to Estimate Student Learning State
With HMMs trained for each skill, we are now able to estimate the probability a skill is in the
Learned or Unlearned state after observing correct/incorrect attempts for that skill as the
student works through the tutor lesson. Arriving at this estimate from a trained HMM is what
Rabiner refers to as “Problem 2” of HMM applications (Rabiner, 1989). Namely, given an
observation sequence, O, (of correct/incorrect responses) and an HMM, λ, for the skill, we
want to know the probability we are in a state Si ((U) or (L)) at time t. Formally, we want:

8

min
�

P
j

|�
j

|+ C
P

l

i=1 log(1 + e�yi�
T
xi)

where:
� is the vector of weights learned by the model.
x
i

is the vector representing the ith Pinyin item presented to a student.
y
i

= +1 if item i answered correctly, y
i

= �1 if item i answered incorrectly.
C > 0 is a penalty parameter.
l is the number of training items.

9

�
t

(i) = P (q
t

= S
i

| O1, O2, ..., Ot

,�)

where:
�
t

(i) is the probability of being in state i at time t.
i 2 {Learned,Unlearned}.
O

t

is the observation of a correct/incorrect attempt at time t.
� is the trained HMM for a skill.

2

 (9)

8

min
�

P
j

|�
j

|+ C
P

l

i=1 log(1 + e�yi�
T
xi)

where:
� is the vector of weights learned by the model.
x
i

is the vector representing the ith Pinyin item presented to a student.
y
i

= +1 if item i answered correctly, y
i

= �1 if item i answered incorrectly.
C > 0 is a penalty parameter.
l is the number of training items.

9

�
t

(i) = P (q
t

= S
i

| O1, O2, ..., Ot

,�)

where:
�
t

(i) is the probability of being in state i at time t.
i 2 {Learned,Unlearned}.
O

t

is the observation of a correct/incorrect attempt at time t.
� is the trained HMM for a skill.

2

Using the probabilities of being in the Unlearned state for each skill, we combine the
probabilities of each feature present in an item being in the Unlearned state and base our
selection of the next item to present on this calculation. Our aim is that by choosing items
with highest average probability of being in the Unlearned state, the tutor will tailor
instruction for the student precisely on skills he or she is having the most difficulty. Our
ultimate goal is to get the students to a certain level of mastery much faster than the previous
tutor model.

Incidentally, this approach may not be ideal for all domains. For Pinyin transcription, a
student has some chance at success with the most difficult skills. However, this will not work
well in domains where there is little to no chance for the student to succeed at the most
difficult skills. Here, one could imagine restricting to a pool of easier items for novice
students, then gradually including the more difficult items.

A practical aspect of using HMMs is that HMM-based knowledge tracing takes a trivial
amount of processing time. This is very important when constructing a web-based tutor,
where long pauses to choose the next Pinyin phrase are unacceptable.
A full analysis of our learned HMMs would require a study of student learning gains: we
would use the HMMs in the context of the Pinyin tutor to aid problem selection, and measure
the resulting student performance over time. We are in the process of conducting a pilot study
of this form. However, to illustrate the performance of the learned HMMs, as well as to make
clear how they are used in the tutor, we show the HMM computations for six skills after
observing the sequence: 01011 (incorrect, correct, incorrect, correct, correct). For
comparison, in each group of two skills, we show the HMM predictions for a skill classified as
easier by our lasso analysis, followed by a skill the lasso classifies as more difficult.

Initial “w” (lasso coefficient = +0.0598):

P((“w” correct on next attempt) | (“w” observations=01011)) = 0.8512

Initial "c" (lasso coefficient = -0.1641):

P((“c” correct on next attempt) | (“c” observations=01011)) = 0.6861

Final “ia” (lasso coefficient = +0.1207):

P((“ia” correct on next attempt) | (“ia” observations=01011)) = 0.7268

Final “un” (lasso coefficient = -0.1616):

P((“un” correct on next attempt) | (“un” observations=01011)) = 0.6874

Tone 5 (lasso coefficient = +0.0293):

P((“tone 5” correct on next attempt) | (“tone 5” observations=01011)) = 0.7393

Tone 2 (lasso coefficient = -0.0429):

P((“tone 2” correct on next attempt) | (“tone 2” observations=01011)) = 0.7045

While the skills the lasso classified as more difficult have a lower probability of correct in
these HMM sequence examples, in general this may not always be the case. For instance, an
HMM can be trained on a skill such that the probability of transferring from the unlearned
state to learned state (P(learn)) is very high, while being classified as “difficult” by the lasso.
This can occur if the training sequence has many incorrect attempts (pushing the lasso
estimate lower), but has the correct attempts preceded by almost all the incorrect attempts
(pushing the HMM’s estimate of P(learn) higher).

7. Conclusions and Future Work
Pinyin transcription is a fundamental task for beginning students of Chinese. We have
presented a novel, detailed analysis of student performance on this task. Our aim is to
illuminate in detail what students find most difficult at this task, provide insight for future
language research, as well as help guide building more effective tutors.
Since the Pinyin Tutor will now be keeping track of the current level of each skill for each
student, we can provide teachers and students with highly detailed reports of their progress.
For the first time, learners using the Pinyin Tutor will know precisely what sounds and Pinyin
spelling they are having most trouble with and can pay more attention to these skills in the
classroom and homework assignments.

So far, we have trained our models using data across all students. But it may be more
beneficial to train models on subsets of students, e.g., considering the students’ native
language. Many studies on the acquisition of second language phonology (elemental sounds)
have demonstrated that the transferred features from the native language phonology are most
difficult to be unlearned (Best, 1995; Flege, 1995; Flege and Mackey, 2004; Major, 2001).
The error analysis on the incorrect Pinyin entries during dictation trainings showed that an

individual’s first language significantly influences the type of errors they make (Zhang, 2009).
For example, English speakers have problems differentiating Tone 2 and Tone 3, whereas
Cantonese speakers often confuse Tone 1 with Tone 4. Therefore, if the user’s first language
can be set as a parameter for Pinyin practice, the tutor can choose the corresponding HMMs
trained on data from students with the same native languages.
We are currently preparing a study to compare learning rates between the original and
intelligent Pinyin Tutor versions, measuring performance at randomly selected Pinyin
dictation tasks delivered at regular intervals throughout the semester.

Acknowledgements

The Pinyin Tutor began development under the direction of Dr. Brian MacWhinney as part of
Yanhui Zhang's doctoral thesis at Carnegie Mellon University. This material is based upon
work supported by the National Science Foundation under the grant for the Pittsburgh Science
of Learning Center, Grant No. SBE-0836012. Additional support is from the Direct Grant for
Research 2009-10 from the Chinese University of Hong Kong, project code 2010347, “Robust
Online Pinyin Refinement Training for Cantonese Speakers”.

References

BECK, J. E., & SISON, J. 2006. Using knowledge tracing in a noisy environment to measure
student reading proficiencies. International Journal of Artificial Intelligence in
Education, 16(2), 129-143.

BEST, C. T. 1995. A direct realist view of cross-language speech perception. In W. Strange
(Ed.), Speech perception and linguistic experience: Issues in cross-language research
(pp. 171–204). Baltimore: York Press.

BOURGERIE, D. S. 2003. Computer aided language learning for Chinese: A survey and
annotated bibliography. Journal of the Chinese Language Teachers Association, 38(2),
17-47.

CASELLA, G. AND BERGER, R. L. 2002. Statistical Inference (2nd. Edition) Duxbury Press,
Pacific Grove: California.

CEN, H. 2009, Generalized Learning Factors Analysis: Improving Cognitive Models with
Machine Learning. Unpublished doctoral dissertation. Carnegie Mellon University,
Pittsburgh, PA.

CHAO, Y-R. 1968. A Grammar of Spoken Chinese. Berkeley & Los Angeles: University of
California.

CHI, M., KOEDINGER, K., GORDON, G., JORDAN, P., AND VANLEHN, K. 2011. Instructional
factors analysis: A cognitive model for multiple instructional interventions.
Proceedings of the 4th International Conference on Educational Data Mining (EDM
2011). pp. 61-70.

CORBETT, A. AND ANDERSON, J. 1995. Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modeling and User-Adapted Interaction, Volume 4, Issue
4, pp. 253-278.

CORBETT, A.T., KAUFFMAN, L., MACLAREN, B., WAGNER, A., AND JONES, E. 2010. A
Cognitive Tutor for genetics problem solving: Learning gains and student modeling.
Journal of Educational Computing Research, 42, 219-239.

DAVIES, G., OTTO, S. E., & RÜSCHOFF, B. 2012. Historical perspectives on CALL.
Contemporary Computer-Assisted Language Learning, 18, 19.

DUANMU, S. 2007. The Phonology of Standard Chinese. (2nd Edition). New York: Oxford
University Press.

EFRON, B., HASTIE, T., JOHNSTONE, I., AND TIBSHIRANI, R. 2004. Least Angle Regression,
Annals of Statistics, Volume 32, Issue 2, pp. 407-499.

FAN, R.-E., CHANG, K.-W., HSIEH, C.-J., WANG, X.-R., AND LIN, C.-J. 2008. LIBLINEAR: A
library for large linear classification, Journal of Machine Learning Research. Volume
9, pp. 1871-1874.

FLEGE, J. E. 1995. Second language speech learning: Theory, findings, and problems. Speech
perception and linguistic experience: Issues in cross-language research, 233-277.

FLEGE, J. AND MACKAY, I. 2004. Perceiving vowels in a second language. Studies in
Second Language Acquisition, Volume 26, pp. 1-34.

GAMPER, J., & KNAPP, J. 2002. A review of intelligent CALL systems. Computer Assisted
Language Learning, 15(4), 329-342.

GRAESSER, A. C., CONLEY, M. W., & OLNEY, A. 2012. Intelligent tutoring systems. APA
handbook of educational psychology. Washington, DC: American Psychological
Association.

FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 2010. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software. Volume 33,
Issue 3.

HASTIE, T., AND EFRON, B. 2012. lars: Least Angle Regression, Lasso and Forward Stagewise.
R package version 1.1. http://CRAN.R-project.org/package=lars

HASTIE, T., AND EFRON, B. 2007. Matrix: Sparse and Dense Matrix Classes and Methods.
URL: http://cran.r-project.org/web/packages/Matrix/index.html (last retrieved on June
30, 2011).

HASTIE, T., AND FRIEDMAN, J. H. 2009. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (2nd Edition). New York: Springer.

HEIFT, T. 2010. Developing an intelligent language tutor. CALICO journal, 27(3), 443-459.
HEIFT, T. 2008. Modeling learner variability in CALL. Computer Assisted Language

Learning, 21(4), 305-321.
HEILMAN, M., AND ESKENAZI, M. 2006. Language Learning: Challenges for Intelligent

Tutoring Systems. Proceedings of the Workshop of Intelligent Tutoring Systems for

Ill-Defined Domains. Presented at The 8th International Conference on Intelligent
Tutoring Systems.

KOEDINGER, K. R., & ANDERSON, J. R. 1993. Reifying Implicit Planning in Geometry:
Guidelines for Model-Based Intelligent Tutoring System Design. In S. P. Lajoie, Ed. &
S. J. Derry, Ed (Eds.), Computers as Cognitive Tools (pp. 15-45). Hillsdale, New
Jersey: Lawrence Erlbaum Associates, Publishers.

KOEDINGER, K. R., ANDERSON, J. R., HADLEY, W.H., & MARK, M. A. 1997. Intelligent
tutoring goes to school in the big city. International Journal of Artificial Intelligence
in Education, 8, 30-43.

KOH, K., KIM, S., AND BOYD, S. 2007. An Interior-Point Method for Large-Scale L1-
Regularized Logistic Regression, Journal of Machine Learning Research. Number 8,
pp. 1519-1555.

KOH, K., KIM, S.J., AND BOYD, S. 2009. l1_logreg: A large-scale solver for l1-regularized
logistic regression problems. URL: http://www.stanford.edu/~boyd/l1_logreg/ (last
retrieved on June 30, 2011).

MAJOR, R. C. 2001. Foreign accent. Amsterdam: Benjamins.

MICHAUD, L. N., MCCOY, K. F., & PENNINGTON, C. A. 2000. An intelligent tutoring system for
deaf learners of written English. In Proceedings of the fourth international ACM
conference on Assistive technologies (pp. 92-100). ACM.

MISLEVY, R. J., STEINBERG, L. S., ALMOND, R. G., AND LUKAS, J. F. 2006. Concepts,
terminology and basic models of evidence-centered design. In Williamson, D. M.,
Mislevy, R. J., and Bejar, I. I. (Eds.), Automated Scoring of Complex Tasks in
Computer-Based Testing, Lawrence Erlbaum Associates, pp.15-47.

PAVLIK JR, P. I., BRAWNER, K., OLNEY, A., & MITROVIC, A. 2013. A Review of Student
Models Used in Intelligent Tutoring Systems. Design Recommendations for Intelligent
Tutoring Systems, 39.

PAVLIK, P. I., CEN, H., AND KOEDINGER, K. R. 2009. Performance factors analysis—a new
alternative to knowledge tracing. Proceedings of the 2009 conference on Artificial
Intelligence in Education. IOS Press, pp.531–538.

The Pittsburgh Science of Learning Center 2013. Robust Learning. URL:
http://www.learnlab.org/research/wiki/index.php/Robust_learning (last retrieved on
January 24, 2013)

RABINER, L. R. 1989. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, Volume77, Issue 3 pp2. 2, pp.257-286

SHEI, C., & HSIEH, H. P. 2012. Linkit: a CALL system for learning Chinese characters, words,
and phrases. Computer Assisted Language Learning, 25(4), 319-338.

TIBSHIRANI, R. 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal
Statistical Society, Series B (Methodological), Volume 58, Issue 1, pp. 267-288.

ZHANG, Y. 2009. Cue Focusing for Robust Phonological Perception in Chinese. Unpublished
doctoral dissertation. Carnegie Mellon University, Pittsburgh, PA.

ZHAO, H., KOEDINGER, K., & KOWALSKI, J. 2013. Knowledge tracing and cue contrast: Second
language English grammar instruction. Proceedings of the 35th Annual Conference of
the Cognitive Science Society.

